If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+100x-750=0
a = 2; b = 100; c = -750;
Δ = b2-4ac
Δ = 1002-4·2·(-750)
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-40\sqrt{10}}{2*2}=\frac{-100-40\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+40\sqrt{10}}{2*2}=\frac{-100+40\sqrt{10}}{4} $
| -9(v+2)+3v+7=7v+10 | | 5(1-4x)=-37+x | | 14x*1.25=15 | | 1+x/2=-4 | | 9+5r=9r | | 41.42=8g+3.66 | | 5x+7/2-x+4/5=1-(3-x/4) | | 12x=9×-6 | | X^2-10002x=20000=0 | | 2x/x-3-6/x=18/x^2-3x | | 5x^2-9x+16=0 | | 6(b-1)=11(b+1) | | 6m+8(3m-6)=102 | | 2.2x=x+100 | | -28x-6=(-34+7x)-7x | | 3(14x)=40 | | x+1/x(1)=2/x | | c^2=216 | | 25+n=-5(2+8n)+6n | | 25n+8=25n+8 | | 25n+8=-5(2+8n)+6n | | x^2+151x+3000=0 | | -2(2n+7)=-28-6n | | 0.2x+4=9.6 | | -3/5x+3=1/2x-5 | | -21/7x-5x=24 | | x2-|5|x+6=0 | | x2-|5x|+6=0 | | 8-8=8-8(x+5)-8x | | 2x(2x-1)(5x+4)=0 | | 14x+(-14)=6x+10 | | 6+6=6+6(x+2) |